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ABSTRACT 

We consider a general linear model ( y , X ,  Z') where 27 is a general 

positive definite matrix and X is possibly rank-deficient. We give 

updated formulae for various statistical quantities of interest (BLUES, 

residual sum of squares, etc.) in the following situations: introduction of 

an additional observation, deletion of an observation, inclusion of a new 

regressor and deletion of a regressor. We give the formulae in statistical 

terminology so that their significance is better understood. We then give 

an application of these results to Regression Diagnostics in the linear 

model with correlated errors. 
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BHIMASANKARAM AND JAMMALAMADAKA 

1. INTRODUCTION AND NOTATION 

Updates of Uest Linear Unbiased Estimators (BLUES) and residual sun) of 

squarcs in linear nlodcls h a w  heen dealt with, among others, by Plackett (1950), Mi- 

t r a  and Uhirrlasankararn (1971); McGillchrist and Sandland (1979), Haslctt (1985) 

m d  Chib. Jammalarr~ada.ka and Tiwari (1987), when one, or more additional ob- 

servations become available. While t,he first two papers considered a model with 

ut~correlated errors, the later three papers dealt with dependent errors. 1\11 the 

papers except that of hlitra and I3himasankaram considered full rank design ma- 

t r ~ x .  Golub and Styan (1973), Pdige (1978) and Kouroukl~s a d  P a i p  (1981) gave 

~rurrlerically stable recursive conlputations for a gcneral linear model. 

Recently, Hhimasankaram and Jarnmalanladaka (1993), henceforth referred to 

as BJ, obtaincd algebraic expressious for the, updates in a general linear model 

(with a general positive definite matrix and a possibly rank deficient design matrix) 

for da t a  or model changes. [By a data change we mean introducing an additional 

observation or deletion of an observation and by model change we mean introducing 

an additional regressor or deletion of a regressor.) In addition to the correction terms 

for. the UI,I;Es and the residual sum of squares, BJ also obtaiued the correction terms 

to l , l U  statistics for tests concerning several estimable linear parametric functions. 

On(, important advantage o l  the exact algebraic expressions is the sht is t ica l  

irllerpreta.t)ilit,y of the correction ternis. That is what we intend to  do in this paper. 

In the process, wc a.re able to siniplify some formulae and some proofs further and 

are also able to  provide bctter insight. It is de~nor~st ra ted  that  the linear zero 

f n ~ ~ c t i o n s  play a11 import,ant role in the updates. Sectiorks 2 and 3 deal with the 

statistical interpretations of the correction terms regarding da ta  and model char~ges 

respectively. Section 4 deals mainly with the deletion diag~~ost ics  in a general linear 

model. 

We use the followirlg notation. For a matrix A,  A', A- ,  C(A) and R(A)  

denote i ts  transpose, generalised inverse (g-inverse), column space and row space, 

respectively. The ordered triplet ( y h ,  Xhr Eh)  denotes the linear model 
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STATISTICS IN A GENERAL LINEAR MODEL 79 1 

where h is the number of observations, E(eh)  = o and D(eh)  = u 2 E h .  R;, 
denotes the residual sum of squares, namely, ( y h - ~ h ~ h ) ' E h - l ( Y h - ~ h ~ h )  where 

ph is any solution to  the normal equations X h ' E h - l X h P  = XhlEh- 'yh.  

Consider a hypothesis 7-1 : A P  = t where R ( A )  C_ R ( X h ) .  Let Th = 

min ( y h  - - x ~ P ) .  We use RLh t o  denote Th - R;,. Observe 
P A P = t  
that LI(ABh) = u ~ A ( X ~ ' E ~ - ' X ~ ) - A ' .  Using Wald's representation, we write 

111 a model with h + 1 observations, the (h + 1)th observation is denoted 

by y(h + 1)  and yh+l denotes the vector (yh l  : y(h f 1))'. The row vector in 

the design matrix Xh+l corresponding to  the observation y(h + 1) is denoted 

by z l ( h  + 1) and the variance of y(h f 1) by 02c. The covariance of ytL with 

y(h + 1)  is denoted by n2c. Thus the dispersion matrix of yh+l is 

We assume that Ehtl is also positive definite. 

In connection with the results on tests of hypotheses we assume the multivariate 

normality for y without explicitly mentioning it each time. 

2. UPDATING FORMULAE FOR A DATA-CHANGE 

In this section we give the updates of BLUES of estimable linear functions of P 
and the conventional unbiased estimator of 02 concerning a general linear   nod el 

when an additional (possibly correlated) observation is introduced into the model or 

an observation is deleted from the model. We also give the updates of the likelihood 

ratio test (LRT) statistics for testing A P  = t (when A P  is estimable) in the 

above situations. We also provide the statistical interpretations of the correction 

terms. 

First, we dispose off a simple case in the following 

Theorem 2.1.  Consider the models ( y h ,  X h ,  E h )  and ( Y ~ + ~ ,  Xh+1,  Eh+ ' )  If 

X A + ~  $ C(Xhl ) ,  then the following hold. 
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792 BHIMASANKARAM AND JAMMALAMADAKA 

( a )  The classes of linear zero function5 under both the models coincide. (Hence, 

in ( Y ~ + ~ ,  Xh+lr El ,+ , ) ,  no linear zero fuiictior~ involves y(h + I) .)  

(b )  BLUES of XhP under both the models coincide. (Denote the same by 

x ~ P . )  D ( X ~ P )  is also the same in both the models. 

(c) BLUE of x l (h  + l ) P  under ( ~ ~ + ~ , X h + l ,  E h + l )  i5 y ( h +  1) -c lEh- ' (yh - 

X h P ) .  

(d) The residual sum of squares and the conventional unbiasrd estimators of u2 

under the two models coincide. 

(e)  Let A P  he estimable under ( y h r  X h ,  E h ) .  Then the LKI' statist,ics for 

testing A P  = ( and their null distributions under the two modrls coincide. 

( a )  is easy to  prow. (b)  and (c) are sirnple consequences of (a). (d)  follows from 

(b )  and (c).  (e) follows from (b)  and (d).  

Thus, no correction terrrl is needed when an observation is introduced into the 

model or deleted from the model if the corresponding row of the dispersion matrix 

does not belong to  the space spanned by the rest of the rows. We shall comment 

later on the importance of the above result in regression diagnostics and in missing 

plot techniy ues. 

111 what follows, we shall consider only the case when x ( h  + 1) E C(Xhl ) .  

2.1. Introducing an additional observation 

\Ve shall give the correction terms to  p h ,  the unbiased estimator of u2 and 

the 1,ll'I' st,atistic for testing A P  = E (where R ( A )  C %?(XI,)) when an addition- 

al obsrrvation i s  introduced into ( y h ,  Xtir  E h )  to  get ( Y / ~ + ~ ,  Xhf l r  E t L + l ) .  AS 

alrcaciy remarked, we assume that  z ( h  + 1) E C(Xhl) .  

First, we introduce a few quantities in terms of which we give the correction 

lerrl~s: 

(i) v1 = x l ( h  + 1) - c 1 z h - l X h .  D
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STATISTICS IN A GENERAL LINEAR MODEL 793 

(ii) d = y(h+  ~ ) - C ' E ~ - ' ~ ~ .  Clearly E(d )  = v l P  Notice that  c l E h - l y h  + v l p  

is the linear regression of yh+l on y b  Hence d is the residual part of 

y(h + I )  not explainable by a linear function of yh .  We call d the residue 

(as opposed to  y(h + 1) - z l ( h  + l )Bh  called the residual in the regression 

diagnostics terminology). 

(iii) oc = V(d)/02.  

(iv) 0 = V(&)/u2 where &, = d B h  is the predictor of d under ( y h ,  X h .  E h ) .  

(v) rh = d-dh. rh is the residual of d under ( y h r  Xh.  E h ) .  Clearly TF(rh)  = 

( a  + 0)u2 as ~ o v ( d , & )  = 0. 

(vi) p = Regression of rh on A P h  - [. 

(vii) 6 = (1 /u2)(V(rh)  - V ( r h l ~ P h ) ) .  Notice that  6 = V ( r h )  would imply that 

rh is a linear function of A B ~  which is not possible since Eh+l is p.d. 

The following theorem gives the correction terms to  various quantities of interest. 

Theorem 2.2. Consider the modelq ( y h ,  X h ,  E h )  and ( Y ~ + ~ ,  Xhtl .  Eh+ ' )  where 

z ( h  + 1) E C(Xhl) .  Let d,  v, rh, a ,  8, p and 6 be as defined above. Then the fol- 

lowing hold: 

2 
~ h u '  u 2  

(c) R&,+, = R$,, + - . 
V(%) (2p  + %) + v ( r h ~ B h )  

The proof follows once the algebraic quantities in Theorem 3.1 of BJ  are identifipd 

in statistical terms. 0 

Remark 1: Let plP be estimable. (Notice that the classes of all estimable functions 

of 0 coincide for the two models under consideration.) Then from (a)  of the 

preceding theorem we have the following. -The difference between the BLUES of 

, namely plBh+l - p l B h ,  is -Cov(plPh'rh)rh,  which is the negative of the 
V(rh) 

A 

linear regression of plPh - pl,B on riL (the residual of the residue). 
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794 BHIMASANKARAM AND JAMMALAMADAKA 

Remark 2: ' rhe ranks of Xh+] and Xh are the same. So an additional linear 

zero funct,ion, which is uncorrelated with every 1inea.r zero function under (y :  X. E ) ,  

has come in due to the introduction of y(h + 1). Clearly, this is rh. This is t,he 

rcasorl why Rib+, is larger than Ri, by u2r;/V(rh).  (See (b) of the preceding 

theorem .) 

2.2. Deleting an observation 

IIere we consider the nlodcl (yh+ ,  , Xh+l. E h + ] )  where x ( h  + 1 ) E C(XI,'). 
A 

We shall give the correction tcrms to Phtl? the conventional unbiased estimator 

of o2 and the LR'I' stat,ist,ic for testing A P  = E (where R ( A )  E R ( X h )  ) when 

the obscrvat,io~i y ( h  + 1)  is dropped to  get the modcl (yh, XI,, E h ) .  
A 

Let d and v he as defined in Section 2.1. Let dh+1 = V ' P ~ + ~ .  Let rh+l = 

d - Thus rh+l is the residual of the residue under ( Y / , + ~ ,  X h + l ,  EhC1) .  It 

is casy to sllow that x (h  + 1) E C(Xl, ' )  if and o~l ly  if rh+] is not a constant ( i n  

fact 0,  with probability 1). We have 

Theorem 2.3. Consider ( Y ~ + ~ ,  Xi ,+ , ,  El,+l) and let x ( h  + 1) E C(Xh'). 'l'hen, 

corresponding to the deletion of the observation y(h + 1). the follow~ng hold: 

whcre 02y is the linear regression of - v 'p  on A , B ~ + ~  - E .  

'l'hc proof follows once the algebraic quantities in Theorem 3.G of BJ are idcntified 

in statistical t e r~ns .  0 

Remark: 'rhe difference in the HLIJEs of an estinmble function p'P, namely ptph- 
A 

p 'hL+13  i b  """p'Ph+l'd)ih+l. Conlpare it with the expression in limnark 1 after 
J ' ( ~ , + I  

Theorem 3.2. 'l'here we had ~ o v ( p ' p ~ ,  r h )  IIere. ~ o u ( p ' ~ ~ ~ + ~ ,  rh+l) is in fact 

zero, as riL+l is a linear zero function. When wr drop the y(h  + I) ,  rh+l is 
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STATISTICS IN A GENERAL LINEAR MODEL 795 

the linear zero function that is lost. This is also evident from (b) of the preceding 

theorem. Compare this with Remark 2 after Theorem 2.2. 

3. UPDATING FORMULAE FOR A MODEL  CHANGE 

In this section, we consider the model (y,  X, E )  and give the correction terms 

for the estimators of /3 and u2 when an additional regressor is introduced into 

the model or a regressor is dropped from the model. We also give the correction 

terms for the LRT statistic for testing AP = 6 in the above situations. 

If the i-th column of X is a linear combination of the remaining columns (this 

is the exact collinearity situation) then Pi, the corresponding P - parameter is 

not estimable. Let X(;) be the matrix obtained from X after deleting the i-th 

column of X without altering the order of the other columns. ,B(i) is defined 

similarly. Then the residual sums of squares and the LRT statistics for testing 

AP = E are identical under (y ,  X, E )  and (y,  X(;), E ) .  If p(;) is a generalized 

least squares estimator of P(i) then a choice of p is (pi,, : 0)'. 

Thus, if we include an additional regressor which is a linear combination of the 

existing regressors, or if we delete a regressor which is a linear combination of the 

rest of the regressors, the least squares analysis does not change in any appreciable 

way. 

Henceforth we shall consider only regressors which are not linearly dependent 

on the other regressors for inclusion or exclusion from the model. 

3.1. Inclusion of an additional regressor 

Consider the model (y,  X, E ) .  Let x be the data on a new regressor leading 

to the model 

Write W = ( X  : x) and 8 = (p' : v)'. Thus the new model after introducing D
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796 BHIMASANKARAM AND JAMMALAMADAKA 

the new regressor can be denoted by ( y ,  W ,  E ) .  As already remarked, we assume 

x  @ C ( X ) .  

Let u = ( X ' E - ' X ) - X ' E - ' Z .  Thus u is the vector of regression coefficients 

when the new regressor is regressed on the existing regressors. Let 

which is the residual sum of squares corresponding to  the above regression. In fact, 

a = 0 if and only if z  E C ( X ) .  Let 8 and p denote generalized least squares 

estimators of 8 and 0 in the models ( y ,  W , E )  and ( y , X , E ) ,  respectively. 

Let Rznew and Riot, denote the residual sum of squares under ( y ,  W ,  E )  and 

( y . X ,  E), respectively. R & ~ ~ ~  and Rbold are defined similarly in connection 

with hypothesis testing. We have the following 

Theorem 3.1. Consider the models ( y ,  X ,  X )  and ( y ,  W ,  E ) ,  where x @ 

Then the following hold. 

- 
8 = (g) where i. = ( l l a ) x ' ~ - ' ( ~  - x B )  and P = P - i.u. 

Rinew = Riold - 3y 'X-1(x  - 21, where 2 = Xu, the predictor of x  based 

on X .  

(c )  Let AP be estimable under ( y ,  X ,  E ) .  Then i t  is estimable under ( y ,  W ,  E )  

also and 

where v = ( l / a 2 ) [ ~ ( A p ) ] - A U .  

(d )  I /  is estimable under ( y ,  W ,  E )  and the usual statistic to test H : I/ = 0 

which has Student's t distribution with n - rank(X)  - 1 degrees of freedom 

under H. ( n  is the number of observations, tha t  is, y  is of the order 
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STATISTICS IN A GENERAL LINEAR MODEL 797 

The proof follows once the algebraic quantities in Theorem 4.3 of BJ are identified 

in statistical terms. 0 

fi as expected is the regression coefficient in the linear regression of the residual 
,. 

of y , y - Xp , on the new regressor. Assuming that we are performing regression 

with intercept, X ' E - ' ( ~  - x P )  is the corrected sum of products corresponding 

to the new variable and the residual of the criterion variable when regressed on the 

original regressors. y'E-l(x - 2 )  has a similar interpretation. 

3.2. Deletion of a regressor 

The statistical interpretation of the differences in the quantities of interest in the 

context of the models ( y ,  X ,  E)  and ( y ,  W ,  E)  is clear from Theorem 3.1 and 

the following discussion. In this section, we reproduce from BJ the updates when 

the last regressor is deleted from ( y ,  W ,  E) in terms of the computations available 

from the analysis of the model ( y ,  W ,  E). As before we assume that x $! C(X). 

We give the correction terms in terms of the following quantities and cu and u 

as defined in Section 3.1. 

We assume without loss of generality that a nonnegative definite (nnd) g-inverse 

of W'E-'W is available. (If G is a g-inverse of W'E-'w, then 

G(w'E-' W)G' is an nnd g-inverse of W'E-I W. )  

Partition the nnd g-inverse of w'E-'w as 

where (7' : r) is the last row of (w'E-~w)-  and r is a scalar. It is easy 

to  identify that r = (l/cu) and q = -(l/a)u. Let p ,  Ria,, and Raold with 

their usual meanings correspond to the model (y, W ,  E) and let 3, RineW and 

Rane_ correspond to the model ( y ,  X ,  E). Then we have D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ev
ad

a 
L

as
 V

eg
as

] 
at

 1
3:

27
 2

1 
A

pr
il 

20
15

 



798 BHIMASANKARAM AND JAMMALAMADAKA 

Theorem 3.2 (RJ ) .  Consider the models (y,  W, E )  and ( y ,  X ,  E )  where x @ 

C(X) .  Then t,he following hold: 

(c) Let AP be estimable under both the models. Consider H : AP = E .  Then 

The proof follows once the algebraic quantities in Theorem 4.4 of BJ are identified 

in statistical terms. 0 

It is easy to see that C2 - ulCI is equal to X ' E - ' ( ~  - x B ) ,  which is the cor- 

rected sum of products of the deleted variable v i th  the residual from the regression 

of the criterion variable on the other predictor variables. 

4. APPLICATIONS 

The most important application of the updates when an observ&ion is deleted is 

t o  the deletion diagnostics in Regression Analysis. The deletion diagnostics are well- 

developed and studied for the case of uncorrelated errors (see for example Belsley, 

Kuh and Welsch (1980), Chatterjee and IIadi (1986). We demonstrate here tha t ,  

even though the algebraic expressions for the diagnostics are different when the 

observations are correlated, the expressions in terms of certain statistical quantities 

remain ~inchanged. We use the same notation as in Belsley, Klih a.nd Welsch (1980) 

for the diagnostics, namely DFBETA, D F F I T  etc. Wr consider the model 

( Y ~ + ~ ,  X h + l ,  Ehfl ) and study the effect of deleting the (h + 1) th  observation 

using the results of Section 2.2. The effect of deleting any other observation can be 

studied in the same way by using a suitable change in the notation. We consider 

only the case x ( h  + 1) E C(Xh1)  as there is no change in the other caw. Ry D
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STATISTICS IN A GENERAL LINEAR MODEL 799 

DFBETAh+l , ,  we mean the difference p'Bh+l - piph where p'P is estimable. 

We have 
Th+l DFBETAh+l , ,  = ---- 

V(Th+l) 
c0v(p1$h+l r 

The scaled change in p'fih+l when the (h  + 1)th observation is deleted is given 

Rib 
where i'(plBh+,) is p ' ( X j E - l h + l ~ h + l ) - p n  - Tank(Xh) .  [Here y h  is of order 

n x 1.1 As a special case, the scaled change in fit of the j t h  observation y, when 

( h  + 1)th  observation is deleted is given by 

As pointed out in Bhimasankaram, Sengupta and Ramanathan (1994), 

JDFFITSh+l ,h+ l l  need not be the maximum among IDFFITSh+l,Jl  for j = 

1 , 2 , .  . . , h + 1,  when the observations are correlated. 

The change in the  residual sum of squares after deleting the (h  + 1)th  obser- 

vation is 

As noted earlier ~ h + ~  is the zero function that is lost due to  the deletion of the 

( h  + 1)th observation. 

The Cook's distance (square) is given by 

where k is the number of predictors. 

We now turn to  Theorem 2.1. The case considered there might look pathological 

a t  the first glance, but i t  is far from it .  This has an important application t o  

analysis with deleted (or missing) observations. Suppose we want to  delete the 7-tll 

observation from (y ,  X, E). Consider a new model 
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800 BHIMASANKARAM AND JAMMALAMADAKA 

~vhere e, is t,lle i- th column of the identity matrix. Clearly, in this model, the i-th 

row of (X : e , )  does not belong t o  the space spanned by the other rows. I le~lce  by 

using Theorem 2.1 it can he seen that analysing the model ( y ,  X, 27) after deleting 

t,hc i-th observation is equivalent to a~lalysing thc model ( y ,  (X : ei) : 27). This 

has been fruitfully utilised i n  the deletion diagnostics. Also this is the principle used 

in the a.nalysis of covariance method used in the missing plot technique. 
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